Mechanical Stress Activates Smad Pathway through PKCδ to Enhance Interleukin-11 Gene Transcription in Osteoblasts

نویسندگان

  • Shinsuke Kido
  • Rika Kuriwaka-Kido
  • Yuka Umino-Miyatani
  • Itsuro Endo
  • Daisuke Inoue
  • Hisaaki Taniguchi
  • Yasumichi Inoue
  • Takeshi Imamura
  • Toshio Matsumoto
چکیده

BACKGROUND Mechanical stress rapidly induces ΔFosB expression in osteoblasts, which binds to interleukin (IL)-11 gene promoter to enhance IL-11 expression, and IL-11 enhances osteoblast differentiation. Because bone morphogenetic proteins (BMPs) also stimulate IL-11 expression in osteoblasts, there is a possibility that BMP-Smad signaling is involved in the enhancement of osteoblast differentiation by mechanical stress. The present study was undertaken to clarify whether mechanical stress affects BMP-Smad signaling, and if so, to elucidate the role of Smad signaling in mechanical stress-induced enhancement of IL-11 gene transcription. METHODOLOGY/PRINCIPAL FINDINGS Mechanical loading by fluid shear stress (FSS) induced phosphorylation of BMP-specific receptor-regulated Smads (BR-Smads), Smad1/5, in murine primary osteoblasts (mPOBs). FSS rapidly phosphorylated Y311 of protein kinase C (PKC)δ, and phosphorylated PKCδ interacted with BR-Smads to phosphorylate BR-Smads. Transfection of PKCδ siRNA or Y311F mutant PKCδ abrogated BR-Smads phosphorylation and suppressed IL-11 gene transcription enhanced by FSS. Activated BR-Smads bound to the Smad-binding element (SBE) of IL-11 gene promoter and formed complex with ΔFosB/JunD heterodimer via binding to the C-terminal region of JunD. Site-directed mutagenesis in the SBE and the AP-1 site revealed that both SBE and AP-1 sites were required for full activation of IL-11 gene promoter by FSS. CONCLUSIONS/SIGNIFICANCE These results demonstrate that PKCδ-BR-Smads pathway plays an important role in the intracellular signaling in response to mechanical stress, and that a cross-talk between PKCδ-BR-Smads and ΔFosB/JunD pathways synergistically stimulates IL-11 gene transcription in response to mechanical stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ERK acts in parallel to PKCδ to mediate the connexin43-dependent potentiation of Runx2 activity by FGF2 in MC3T3 osteoblasts.

The gap junction protein, connexin43 (Cx43), plays an important role in skeletal biology. Previously, we have shown that Cx43 can enhance the signaling and transcriptional response to fibroblast growth factor 2 (FGF2) in osteoblasts by increasing protein kinase C-δ (PKCδ) activation to affect Runx2 activity. In the present study, we show by luciferase reporter assays that the ERK signaling casc...

متن کامل

Mechanical stress-activated PKCδ regulates smooth muscle cell migration

Vascular smooth muscle cells (SMCs) are exposed to altered mechanical stress that may contribute to SMC migration in the development of atherosclerosis. Signal transduction pathways in SMCs activated by mechanical stress that instigate cell migration are undefined. Herein, we provide evidence that mechanical stress enhances SMC migration, which is mediated, at least in part, by protein kinase C...

متن کامل

The effect of resistance training and date pollen extract on bone tissue density and osteoblast cell proliferation in young male rats

Extended Abstract 1.Introduction One of the tissues that is affected by physical activity is bone. Bone is one of the tissues that needs to receive mechanical load to have normal function as a key factor in strengthening bone mass (2). Evidence shows that the mechanical load resulting from physical activity activates a set of proteins involved in the process of osteoblast activation and inhib...

متن کامل

PKCδ as a regulator for TGF-β-stimulated connective tissue growth factor production in human hepatocarcinoma (HepG2) cells.

CTGF (connective tissue growth factor) is widely regarded as an important amplifier of the profibrogenic action of TGF-β (transforming growth factor β) in a variety of tissues, although the precise mechanism of how the TGF-β signalling pathways modulate CTGF expression remains unclear. In the present study, the role of PKCδ (protein kinase Cδ) in TGF-β1-mediated CTGF expression was investigated...

متن کامل

Gremlin Activates the Smad Pathway Linked to Epithelial Mesenchymal Transdifferentiation in Cultured Tubular Epithelial Cells

Gremlin is a developmental gene upregulated in human chronic kidney disease and in renal cells in response to transforming growth factor-β (TGF-β). Epithelial mesenchymal transition (EMT) is one process involved in renal fibrosis. In tubular epithelial cells we have recently described that Gremlin induces EMT and acts as a downstream TGF-β mediator. Our aim was to investigate whether Gremlin pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2010